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Resistance of clean SNS sandwiches 

H W Lean and J R Waldram 
Superconductivity Research Centre and Cavendish Laboratory, Cambridge, CB3 OHE, 
UK 

Received 23 September 1988 

Abstract. Measurements are reported of the resistance of In/W/In sandwiches. The data 
close to T, are found to fit the theory developed by Battersby and Waldram. In an attempt 
to explain further the data below T, new expressions for the excitation reflection and 
transmission coefficients at the interface have been developed, by matching solutions to the 
Bogoliubov equations at the interface in two simple models. These models give poor fits to 
the data at temperatures below about 0.6 Tc, where the theoretical curve is found to have 
the wrong curvature. This discrepancy has been resolved by allowing for the penetration of 
the energy gap of the In into the W. 

1. Introduction 

The behaviour of the resistance of superconductor-normal-superconductor (SNS) sand- 
wiches when the superconductor is clean and close to its transition temperature is 
faily well understood. Pippard et a1 (1971) first obtained adequate agreement between 
experiment and theory. Their theory was later extended to include a more realistic 
physical model by Waldram (1975). By using simplified boundary conditions in this 
theory, Battersby and Waldram (1984) again obtained agreement with experiment close 
to T,. The purpose of this paper is to describe a new experimental investigation of the 
properties of clean SNS sandwiches and a more realistic form of the Waldram theory 
which describes their resistance down to temperatures well below T,. 

Figure 1 shows typical RSNS( T )  data obtained with clean superconductors. In general 
the resistance is slowly varying up to about 0.8 T, while above that temperature it begins 
to rise and diverges at T,. As discussed by Waldram (1975) the divergence is caused by 
excitations with energy greater than A penetrating from N into s, which maintains a 
charge imbalance in s. As T, is approached the rate of relaxation of charge imbalance 
falls to zero, leading to the observed divergence in the resistance at T,. In this paper, 
however, we shall be primarily interested in the behaviour at temperatures below 0.8 T,. 
In this range the resistance fulls gradually with increasing temperature before reaching 
a minimum. At first sight we might expect that, at temperatures sufficiently low that all 
excitations arriving at the interface from N have energies much less than A ,  all excitations 
would be Andreev reflected with electron-hole inversion (Andreev 1964), and without 
boundary resistance. The reason why resistance is in fact seen is the subject of this paper. 
It is clear that there must be a mechanism which causes some excitations of energy less 
than A to be reflected normally, that is, without electron-hole inversion, which is 
probably related to an imperfection of the interface, either intrinsic between the Fermi 
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Figure 2. Schematic illustration of Harding's 
model of the NS interface. 

wavefunctions of the two metals or some layer of excess scattering at the interface. 
Harding et a1 (1974) showed that the low-temperature resistance of SNS sandwiches was 
very sensitive to the sample making technique, which suggests that interface con- 
tamination can be important. 

Harding et a1 describe a model which satisfactorily predicts the form of R,,,( T )  in 
the range below 0.8 T,. In this model part of the interface was taken to be covered with 
a thin layer of some insulator and the rest was 'perfect' NS contact (figure 2).The overall 
resistance was therefore that of the NIS contact (assumed to be thezero biasBcs tunnelling 
resistance) in parallel with that of the NS interface. The model may be questioned, 
however, firstly because in order to fit the experimental data Harding et a1 found it 
necessary to use values of A in Pb of about half the expected BCS value. They state that 
this could possibly be due to the oxide patches being of the order of a coherence length 
in size so that the energy gap is reduced by the area of NS contact. More recently, 
however, Shelankov (1985) has suggested that the unrealistic values required for the 
energy gap may result from the BCS tunnel theory being applied outside the temperature 
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range where it is valid. Secondly, it was not clear why some parts of the interface should 
be perfectly clean when others had a significant insulating layer. A model which has 
some form of imperfection over the entire area of the interface would seem more natural. 
Such a model is described in this paper. 

2. Experimental method 

The system used for the present work was In/W/In, in contrast to most of the previous 
work which used Pb/Cu/Pb sandwiches. This work was the first to use In as the super- 
conductor which means that it was an important test of the theory using a weak coupling 
superconductor. The use of W also made possible the use of a new method of manu- 
facturing clean SN contacts. This sample making technique has been described in detail 
in Lean (1987) and Lean and Waldram (1989). In brief, the interfaces were formed by 
resistively heating a slice of W in a high vacuum with pieces of In on top. The In melted 
and coated the surface of the W at about orange heat at which temperature surface 
contaminants are driven off the W. The interfaces were therefore formed while the 
surface of the W was relatively free of surface contamination. After cooling the vacuum 
was broken, the W slice inverted and the procedure repeated to form the second NS 
interface. The resulting W with a layer of In on both surfaces was then converted to a 
sample with well defined interface area by a simple procedure involving the use of Pyrex 
tubes to form the casts. 

The resistance properties of these sample were measured in the range 1.2 to 4 K 
using a SQUID voltmeter in a cryostat described by Battersby and Waldram (1988). The 
quality of the NS interfaces, as judged by the fall in resistance between about 0.3 T, and 
the minimum value, was about the same as those used by Harding (1973) and Battersby 
(1981). 

3. Comparison of data with the Battersby theory 

In this section the simple boundary conditions used by Battersby are discussed and the 
data are compared with the resultant theory. We do so because it is of interest to compare 
this simplified theory with data on a weak coupling superconductor. It also serves to 
introduce certain difficulties with the simplified theory which motivated the more com- 
plex models described in the rest of this paper. 

The general result used in this work is that of Waldram (1975) for the boundary 
resistance of an NS interface, expressed in terms of integrals over energy of various 
combinations of reflection and transmission coefficients (his equations 3.14-3.16). The 
coefficients concerned are the probabilities of normal and Andreev reflection and normal 
and Andreev transmission of excitations of energy E denoted R,(E), R,(E), T,(E), 
?",(E) respectively. The theories described in this paper are concerned with developing 
realistic energy dependent expressions for these quantities. 

The simplified boundary conditions used by Battersby were as follows. 

(i) RN = 0 for all energies, which assumed there is no oxide etc or mismatch at 
the interface to scatter back the excitations 'normally'. This might be a reasonable 
approximation for some pairs of metals if the superconductor is clean and if care is taken 
to prepare very clean interfaces. 

(ii) RA = 1 below the gap, which follows from (i) since no transmission is possible. 
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Figure 3. Typical Rshs data for two samples plotted to show fit to Battersby theory. 

(iii) R A  = 0 above the gap. Andreev (1964) showed that there is an appreciable 
probability of Andreev reflection for excitations with energy just above A .  However, 
this is expected to have a negligible effect near T, where most excitations will have 
energies many times A and a low Andreev reflection probability. 

It is emphasised that because of (iii) this theory was expected to be valid only close to T,. 
Because of (i) all boundary resistance in this model is associated with charge imbalance in 
S. 

Substituting these boundary conditions into Waldram's integrals and neglecting 
terms which turn out to be small leads to the result quoted by Battersby and Waldram 
(using slightly different notation) 

Q i  = 2f(A)(A3/10)S* (3.i) 

Here, following Pippard et a1 (1971), the resistance is expressed by the dimensionless 
quantity Q, which is the number of mean free paths in N required to give the same 
resistance. The resistance of the interface, R,, is given by R, = Q,(pZo)N/A whereA is the 
area of the interface and lo is the excitation mean free path. (Throughout this paper 
superscript N or s implies that the quantity concerned is to be taken in N or s.) A, is the 
diffusion length for branch crossing processes defined by Waldram as ( Io13)1/2 where I, is 
the mean free path for branch crossing processes. 

This result may be given a simple interpretation. The resistance behaves as though 
the fraction 2f(A) of excitations above the gap were flowing through a layer of s of 
thickness A which had turned normal. In order to compare this theory with the data it is 
necessary to insert a specific form for A3( T ) .  The form A3( T )  = A'S( T )  used in this work 
was that derived by Battersby and Waldram (1989) (their equation 6.8). The fit to this 
theory is best seen by plotting RsNs against 2f(A)S(T). The data from two samples 
plotted in this way are shown in figure 3, and it can be seen that good straight lines are 
observed close to T, with, however, deviation from the theory at low temperatures. 
Since lo varied significantly from sample to sample, the values of A obtained from the 
gradients are best considered in terms of 1; = (A0)*  / I o .  The value of I3 should be constant 
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Figure 4. Typical RsNs data with Battersby theory curve to show discrepancy at lower 
temperatures. 

from sample to sample if the theory is obeyed. The values for four samples are shown in 
table 1. It can be seen that the values of I s  are indeed fairly constant, 

Figure 4 shows typical experimental data compared with the theoretical fit plotted 
with a linear temperature axis. It can be seen that the agreement is good above about 
0.9 T,. Below this the experimental data reaches a minimum before rising slowly as 
the temperature is reduced. In contrast the theoretical curve continues to fall as the 
temperature is reduced; as mentioned above this is due to the assumption RN = 0 which 
means that subgap excitations do not contribute any interface resistance. The fact that 
extra interface resistance is seen experimentally at low temperatures is a clear indication 
that is necessary to insert more realistic boundary conditions in which RN # 0 to model 
this behaviour. Such theories are described in the rest of this paper. 

4. Step-function potential theory compared with experiment 

The approach adopted to calculating more realistic boundary conditions was that of 
matching bulk solutions to the Bolgoliubov equations for the excitation state functions 
on the two sides of the interface. It is clearly necessary to choose some spatially varying 
potential to cause some normal reflection. Two idealised forms of potential have been 
used, the step-function potential described in this section and the delta function form 
described in the next. 

The step-function potential was of the form shown in figure 5 ;  both A and V are 
assumed to have steps at the interface. This model is intended to represent the effects 
of normal scattering caused by intrinsic mismatch between the bulk properties of the 
two metals rather than from any dirt etc at the interface. The stages in the derivation of 
the boundary conditions are given below. 

(i) The bulk solutions u(x) ,  v ( x )  to the Bogoliubov equations in N and s are written 
down. Below the gap in s they are very slightly evanescent (as described by Harding et 
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al l973);  clearly only the solutions which decay into s are physically meaningful in this 
situation. Above the gap the solutions represent the usual BCS excitation spectrum. 

(ii) The total wavefunction is written down on each side of the interface. The 
incoming electron wave is assigned amplitude unity. The normal and Andreev reflected 
waves are assigned amplitudes YN and rA respectively. The transmitted waves are similarly 
assigned amplitudes t N  and tA above the gap. Below the gap the transmitted evanescent 
modes are assigned amplitudes tA+ and tB,  following the notation of Harding et al. 

(iii) u(x), u ( x )  and their slopes are set to be continuous at the interface. This leads 
to four equations both above and below the gap. 

(iv) These equations are solved to give expressions for rA,  Y N ,  tA, tN in terms of E and 
y = kFs/kFN, the ratio of Fermi wavevectors in the two metals. 

(v) The amplitude reflection and transmission factors thus obtained are converted 
to flux amplitudes, denoted by RA,  RN, TA, T,, by multiplying them by their complex 
conjugates. In the case of the transmission factors they also have to be multiplied by yos /  
uN where the us denote excitation velocities. 

The results obtained are given below. For E > A 

RN = (1 - Y~)~(E/E)'/D 
RA = 4y2(1 + &/E)(1 - &/E) /D  

TN = 2y(l + ~ ) ' ( 1  + E / E ) ( E / E ) / D  

TA = 2y( l  - ~ ) ~ ( 1  - E/E)(E/E)/D 
(4.1) 

where D = [ u i ( 1  + 7)' - u i ( 1  - y)'I2. For E < A 

RA = {[1 + ( A  - 1)][1 - (E/A)2]}-1 R N = I - R A  ( 4 4  
whereA = (1 + ~ ~ ) ~ / 4 y * .  

Several points about these results are worth mentioning. 

(i) The particle conservation relations, RA + RN + TA + TN = 1 above the gap and 
RA + RN = 1 below it are obeyed. 

(ii) The relation RARN = TATy derived for supergap excitations in Appendix A of 
Battersby and Waldram (1988) by assuming electron-hole symmetry, is obeyed above 
the gap. Below the gap where TA = TN = 0 it breaks down. 

(iii) If we set y = 1 (i.e. no Fermi surface mismatch) the expected results are 
recovered: RA = 1 below the gap, RA(E) has form of Andreev (1964) above the gap and 
RN = 0 at all energies. 

(iv) For y # 1 (4.2) implies that RA = 1 for E = A but decreases as E is reduced. 
RA(E) is plotted for several values of y in figure 6. This is important since it provides a 
mechanism for the fall in resistance observed between 0.3 and 0.8 T,: as the temperature 
is increased in this range the average energy of the excitations increases and there are 
therefore more excitations with lower values of RN.  

Before these boundary conditions could be used in Waldram's integrals to calculate 
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Figure 6. The Andreev reflection factor R,(E) for sub-gap electrons for various values of 
the mismatch parameter y calculated from the step function model. 

the boundary resistance the values of the other parameters of his theory had to be 
estimated. These were l2 in W and In, defined by Waldram as the mean free path for 
inelastic processes which, as pointed out by Pippard et a1 (1971), can be taken as the 
mean free path for thermal conduction in ideally pure material. Estimates of l 2  were 
therefore obtained from thermal conductivity data of Guenault (1961) in the case of In 
and Wagner et a1 (1971) in the case of W. In the case of W, f2 (the diffusion length for 
inelastic scattering) turns out to be rather longer than the thickness of the W slice, d 
(about 0.4 mm). In this case, as shown by Pippard et a1 (1971), l2  should be taken as 
approximately d /2 .  For the In the value of l2 inserted in the theory was temperature 
dependent (12 in fact increases rapidly with decreasing temperature, reflecting the 
reduction in the number of phonons available to take part in inelastic processes). 

Other quantities were fitted as adjustable parameters. The value of I ,  was handled 
as in 9 3: the temperature dependence of Battersby and Waldram was used and 1: was 
left as an adjustable parameter. The other adjustable parameters in the theory were y 
adjusted so that the fall in resistance at low temperatures was of the correct magnitude, 
T,, adjusted by a few mK to fit the divergence below T, as in § 3 and Rw, the constant 
resistance to be subtracted from the experimental curve to bring it into coincidence with 
the theory. R% represents the bulk resistance of the W plus any interface resistance 
due to effects other than resistance between the two metals and was assumed to be 
temperature independent. 

Table 1. Parameters fitted to the Battersby boundary conditions 

Sample no lo (io+ m) 1; m) 

91 2.0 2 0.1 2.5 ? 0.3 
97 1.2 t 0.1 2.0 t 0.2 
99 1.6 t 0.1 2.0 * 0.2 

108 0.8 t 0.1 2.0 ? 0.3 
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Figure 7. Fits of experimental R,,,(T) to step function model. The upper plot has been 
raised byO.l nQ, 

Once estimates of the various parameters had been made, the theoretical resistance 
curves were calculated from Waldram's integrals with the boundary conditions (4.1) and 
(4.2). The integrals were evaluated numerically. Typical fits to the experimental data 
with this theory are given in figure 7. It can be seen that the theory fits well from the 
minimum in the curve up to T,. At low temperatures, however, the fit is not very good. 
The experimental curve shows signs of levelling out as the temperature is reduced below 
about 0.6 T, whereas the theoretical fit has the opposite curvature. The reason for this 
poorness of fit at low temperatures is discussed in 8 6. The values of I! and y found for 
the best fits to the data for four samples are given in table 2. The relatively large errors 
quoted for Ig  in this case reflect the fact that the magnitude of the divergence at T, is only 
a fairly slow function of 2,: the magnitude of the divergence is proportional to l3 and 
hence to fl. The values of 1, are again found to be fairly constant from sample to 
sample. In this case, however, the values are about a factor of six higher than those 
found using the Battersby boundary conditions described in § 3. It is easy to see the 
physical reason for this difference. In the step-function potential model there is a finite 
RN which means that fewer supergap excitations penetrate into s. Just below T,, where 
charge inbalance in s is the dominant source of resistance, the only way in which the 

Table 2. Parameters fitted to step function boundary conditions. 

Sample no 13 (10-j m) Y 

91 
97 
98 
99 

1.4 i: 0.1 0.315 
1.0 t 0.1 0.305 
1.4 * 0.1 0.325 
1.4 t 0.1 0.325 



Resistance of cleun SNS sandwiches 1293 

theory can generate the same observed voltage is by assuming that I$' is longer: in this 
way the same Q can be set up at the interface even though fewer excitations are entering 

The main criticism which can be made of this model is that the step function potential 
implies that normal reflection is caused by the ratio, y ,  of the kF values, an intrinsic 
property of the two metals. As mentioned earlier, previous workers have found that the 
low temperature fall in the resistance is critically dependent on the interface preparation 
technique. This, together with the variation in the values of y required to fit the present 
samples implies that the normal reflection is, in part at least, caused by imperfections at 
the interface rather than to mismatch between the two metals. (It should be noted that 
although y only varies between 0.305 and 0.325, the low temperature fall is particularly 
sensitive to its value: this range corresponds to low-temperature resistances falling in 
the range 0.041-0.07 nQ.) In order to overcome this criticism the delta function model 
was tried and is described in the next section. 

s. 

5. Delta-function theory compared with experiment 

The potential used in this theory was a delta function of the form V = f @ )  with A 
again assumed to have a step at x = 0 (figure 5 ) .  This is intended to represent normal 
scattering caused by dirt etc at the interface. The real situation will probably be some- 
where between this model and the one described in § 4, so comparison is of interest. The 
derivation of the boundary conditions in this case was carried out in the same way as in 
the mismatch theory. The results derived from this theory are given below. For E > A 

R N  = F- ' (a4  + 4a2) TA = F1[2u2[2a( l  - E/E)(E/E)] 
(5.1) RA = FW1[16b(l - b) -2]  

where 

TN = F-'[2(4 + a ' ) ( l  + E/E) (E /E)]  

F =  [4(1 - b)-' + a212 a = 2mf/fi2k, 

b = ( u B / u B )  = (1 + &/E) ( l  - &/E).  

F o r E < A  

RA = [l + (4R/(1-  R))(1- (E/A>')]-' R N = l - R A  ( 5  4 
where R = a 2 / ( 4  + U*) .  

The important point here is that the expression for RA below the gap is of the same 
form as (4.2) which was obtained using the mismatch theory. In order to convert one to 
the other the parameter A involving y must be replaced by R ,  involving a ,  according to 

A - 1 = 4R/ (1 -  R) .  (5 .3)  
This means that well below T, the two theories will give the same results. In particular 
the fit to the fall in RsNs from the lowest temperatures to the minimum will not be any 
better with this theory than it was with the mismatch theory. The expressions above the 
gap are different, however, so that differences may be expected close to T,. The new 
expression for RA still tends to that of Andreev in the case of a perfect interface where 
a = 0. 

These boundary conditions were fitted to the data in the same way as the mismatch 
boundary conditions. Two examples of fits to experimental data using this theory are 
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given in figure 8. It can be seen that again the fit below T, is good and: as expected, the 
low-temperature fit is no better than before. The values of I! and a for the best fits are 
given in table 3. The values off! are even greater than those required in the mismatch 
theory. They are now about a factor of 20 greater than in the simple theory discussed in 
§ 3. However it should again be remembered that the physically important quantit 

L3  in this case will, therefore, be only about a factor of 4.5 greater than in the simple 
case. The values of a obtained for the best fits are in all cases close to those implied by 
(5.3) andthefitsto themismatchtheory(table2). Theseresultsconfirmthat, asexpected, 
this theory is essentially the same as the mismatch one at low temperatures. The reflection 
and transmission factors obtained above the gap are different, however, and this leads 
to differences in the magnitude of the divergence below T,. 

(which is proportional to the resistance generated by the Q) is A 3  which varies as vlf 

6. Theory including the proximity effect 

A better fit to the low-temperature behaviour has been obtained by taking into account 
the effect of a non-zero A extending into N. This is likely to be significant in the present 
samples because W is a superconductor with an appreciable T, (about 0.02 K). The likely 

Table 3. Parameters fitted to &function boundary conditions. 

Sample no 1 : / 1 0 - ~  m a 

91 
97 
98 
99 

4 t 0.6 1.45 
3 t 0.6 1.53 
4 t 0.6 1.40 
4 t 0.6 1.40 
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Figure 9. The form of A(x) near the interface 
assumed in the proximity effect calculation. 

form of A(x) in the region of the interface is shown in figure 9. The form of A will differ 
from the step assumed so far in two ways. Firstly it will have a finite value just on the 
normal side of the interface (denoted AN) and will decay into N. Secondly, on the s side 
close to the interface A will be pulled down from its bulk value Ao. This second effect 
will not directly affect the excitations in the temperature range of interest as they will 
mostly have E e h o ;  it will, however, affect the value of AN. 

The tail of A extending into N will mean that excitations in N with E < AN impinging 
on the interface will be reflected inside N rather than at the interface itself. This will have 
the effect that the excitations will no longer interact directly with the impurities or 
mismatch at the interface. However, as discussed in Harding et a1 (1973), evanescent 
tails of the excitations will extend into the forbidden region and these will still interact 
with the potential step at the interface to produce a reduced resistance. In order to assess 
the size of this effect, it is necessary to know the relative sizes of KN1 the decay length 
of A in N as obtained from the theory of the proximity effect, and the decay lengths of 
the evanescent modes which are related to the length I, introduced by Harding et al. If 
KN were to be much shorter than the evanescent decay length (so that the evanescent 
waves hardly decay at all between the point of reflection and the interface) then the 
reduction in the resistance would be very small and this effect would be negligible. 

KN was calculated from the result of Hook and Waldram (1973) in the clean limit 

KN1 = 0.42 hVF/nkB T. (6.1) 
Inserting values for In leads to the result KN1 (T/K) = 2.5 x m, so at the lowest 
temperatures at which data was taken KN1 will be about 2 X m. Estimates can be 
made of the evanescent decay length close to the interface, using I, = huF/2A (as shown 
by Harding et al) and realistic estimates of the size of A, which give typical values of 
about 5 X m for zero-energy excitations. Thus the effect on RN is expected to be 
significant. 

In order to calculate the influence of the proximity effect on the resistance at low 
temperatures, we also needestimatesof the parameters Ao/As and As/ANwhich together 
give the value of A N .  The latter was calculated using the boundary condition derived by 
de Gennes (1964): 

ASIAN = (NoV)S/(NoV)N. (6.2) 
Although Hook and Waldram have pointed out that this boundary condition is not very 
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Figure 10. Delta function model theoretical curves fora = 1.5 with (lowercurve) andwithout 
(upper curve) allowance for the proximity effect. 

rigorous, it was used in this work since it only scaled an adjustable parameter in the 
final theory. NoV was calculated for In and W from the values of T, and the Debye 
temperature, using the BCS expression for T,. It is found that the ratio ASIAN is expected 
to be about three. The ratio Ao/As which gives the extent that A is pulled down in s 
by the interface is harder to estimate. The theory of McMillan (1968) suggests it is 
approximately two. In view of these uncertainties, two values of the ratio X = Ao/As 
were tried in the theory. 

The delta-function potential theory described in the § 5 was modified to include this 
effect. This was done by using the results of Tomlinson (1973), who also performed this 
calculation. The supergap boundary conditions are, of course, unchanged. The subgap 
ones for when E < N are modified, by inserting Tomlinson's form for RN 

where 

andf(u) = (1 - u2)1/2 - U c 0 s - l ~ .  
This expression gives the same value of R, as (5.2) when E = AN. It should be noted 

that the function 0 represents the total decay of the evanescent wave amplitude between 
the point of Andreev reflection and interface. Figure 10 compares theoretical curves 
(for a = 1.5) with and without this effect. It can be seen that, as expected, the proximity 
effect significantly decreases the resistance at low temperatures but has little effect 
near T,. 

The modified theory was fitted to the experimental data. Two values of Ao/AN were 
tried, 3 and 6. Typical fits are shown in figure 11. In order to balance the depression of 
the resistance at low temperatures it is found that the values of a required are slightly 
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Figure 11. Typical fit to proximity effect theory with A0/AN = 3 (upper curve, raised by 
0.1 nQ) and 6 (lower curve). 

increased. It can be seen that the fits at low temperatures are much better than in the 
unmodified theory: the theoretical curves have the correct curvature at low 
temperatures. It turns out, rather surprisingly, that the Ao/AN = 3 curves fit the data 
better than Ao/AN = 6 ones. If (6.2) is taken seriously this implies that A is not pulled 
down significantly in s close to the interface. 

It seems therefore, that the shape of the R,,,(T) curve in In/W/In at low tem- 
peratures is strongly influenced by the proximity effect. It would be interesting to 
extend measurements on this system to lower temperatures. One would expect that the 
resistance would be observed to pass through a maximum and begin to fall again. 

7. Summary 

We have reported measurements of NS interface using In/W/In sandwiches for the first 
time. The data were first compared with the simplified theory developed by Battersby 
and Waldram (1984) from that of Waldram (1975). It was found that agreement with the 
experimental data was good close to T, but poor below about 0.8 T,. This was to be 
expected since the behaviour at lower temperatures is dominated by normal reflection 
of excitations caused by dirt etc at the interface which is neglected in this theory. 

Attempts were therefore made to improve on the simplified theory by calculating 
more realistic expressions for the interface reflection and transmission coefficients. In 
order to include some normal reflection two models were used for possible imperfections 
of the interface, a step-function form for the normal potential intended to model mis- 
match between the Fermi wavevectors of the two metals, and a delta-function potential 
intended to represent sources of scattering actually at the interface. These two models 
gave very similar results. It was found that agreement between experiment and the 
resulting theoretical curves was good in the range above about 0.6 T,. At the lowest 
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temperatures at which data was taken (about 0.3 T J ,  however, the theoretical curves 
were found to have the wrong curvature. This latter discrepancy was resolved by mod- 
ifying the delta-function theory to include the effect of penetration of the In energy gap 
into the W. This caused the excitations to be reflected inside the W at some distance 
from the imperfect interface, thus reducing the observed resistance at low temperatures. 
Our experimental data fitted quite well to the resulting theoretical curve when reasonable 
estimates were made of the parameters in this theory. 
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